语法测试页

复杂表格

ABCD
<! row3 > A<! col2 > B<! row2 > D
<! row2 > BC
<! col2 > C

数学公式

$$x(l)=\int_0^l{\cos{\frac{\theta^2}{2}}d\theta}, y(l)=\int_0^l{\sin{\frac{\theta^2}{2}}d\theta}$$

多页面区域

代码高亮

#include <stdio.h>

int main(int argc, char *argv[])
{
    printf("Hello World\n");
    return 0;
}
print "Hello World"

时序图等

sequenceDiagram participant Alice participant Bob Alice->>John: Hello John, how are you? loop Healthcheck John->>John: Fight against hypochondria end Note right of John: Rational thoughts
prevail! John-->>Alice: Great! John->>Bob: How about you? Bob-->>John: Jolly good!

流程图

st=>start: Start|past:>http://www.google.com[blank]
e=>end: End|future:>http://www.google.com
op1=>operation: My Operation|past
op2=>operation: Stuff|current
sub1=>subroutine: My Subroutine|invalid
cond=>condition: Yes
or No?|approved:>http://www.google.com
c2=>condition: Good idea|rejected
io=>inputoutput: catch something...|future

st->op1(right)->cond
cond(yes, right)->c2
cond(no)->sub1(left)->op1
c2(yes)->io->e
c2(no)->op2->e

算法

    
    % This quicksort algorithm is extracted from Chapter 7, Introduction to Algorithms (3rd edition)
    \begin{algorithm}
    \caption{Quicksort}
    \begin{algorithmic}
    \PROCEDURE{Quicksort}{$A, p, r$}
        \IF{$p < r$} 
            \STATE $q = $ \CALL{Partition}{$A, p, r$}
            \STATE \CALL{Quicksort}{$A, p, q - 1$}
            \STATE \CALL{Quicksort}{$A, q + 1, r$}
        \ENDIF
    \ENDPROCEDURE
    \PROCEDURE{Partition}{$A, p, r$}
        \STATE $x = A[r]$
        \STATE $i = p - 1$
        \FOR{$j = p$ \TO $r - 1$}
            \IF{$A[j] < x$}
                \STATE $i = i + 1$
                \STATE exchange
                $A[i]$ with $A[j]$
            \ENDIF
            \STATE exchange $A[i]$ with $A[r]$
        \ENDFOR
    \ENDPROCEDURE
    \end{algorithmic}
    \end{algorithm}

链珠图

% An example application of the concatAll operator.
% Edit this code to redraw the diagram in real time.

x = ----a------b------|

y = ---c-d---|

z = ---e--f-|

-x---y----z------|


> concatAll $f(x)\to 2^x$

-----a------b---------c-d------e--f-|

代码高亮

终端

窗口风格

bash~
        
ls -l .

代码块风格


Get-Location
(out)
(out)Path
(out)----
(out)D:\code_at_blog\prism